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LEITER TO THE EDITOR 

Mirror theory of spin systems with a surface 

Kaoru Ohno and Yutaka Okabe 
Department of Physics, Tohoku University, Sendai 980, Japan 

Received 1 April 1985 

Abstract. We discuss the mirror theory of spin systems with a surface. In the semi-infinite 
system, the 2-point correlation function at bulk critical temperature depends only on the 
‘real’ distance and the ‘image’ distance, as was shown by the present authors within the 
framework of l/n expansion and more recently by Cardy with the use of the conformal 
invariance. According to this mirror theory, we can directly show the scaling relation 
21)_ - v,, = 7. We also find a universal combination of amplitudes. 

We check the mirror theory by means of the E (  = 4- d )  expansion and present the 
explicit form of the correlation function in real space up to O ( E ~ ) .  The resulting surface 
critical exponents vL and coincide with those obtained previously. 

The critical phenomena at surfaces have currently aroused considerable interest (see 
Binder (1983) and references quoted therein). In spin systems with a surface, an 
understanding of the role of the surface is important in order to determine the 
correlation functions. Investigating the critical behaviour of the ordinary and special 
transitions in the framework of 1/ n expansion, Ohno and Okabe (1983) pointed out 
that the surface of the semi-infinite system plays the role of ‘mirror’ at the bulk critical 
temperature. This mirror theory imposes some constraint for the 2-point correlation 
function G ( r l ,  r2)  at the bulk critical temperature. That is, only the ‘real’ distance 
r = [ p2 + (zl  - z2)2]1/2 and the ‘image’ distance P = [ p 2  + (z,  + z2)2]1/2 become relevant 
lengths at criticality, where z1 and z2 are normal distances from the surface and p is 
a parallel distance projected onto the surface (see figure 1). In other words, together 
with the requirement of a homogeneous function, the 2-point correlation function is 
usually written as 

G(rl ,  r 2 ) = G p ( z 1 , z 2 ) =  GbUlk(r)Y(r/P). (1) 

Here Gbu“( r )  = Cr2-d-v denotes the bulk correlation function ( d  is the spatial 
dimension and 17 the bulk anomalous dimension) and Y( r /  P) is an unknown function 
of r / P  which goes to unity as r / P  goes to zero. Equation (1) can be rewritten in a 
slightly different form: 

Gp(zl ,  z2) = ( Z ~ Z ~ ) ( ~ - ~ - ” ) ’ ~  f ( v )  (2) 

with a non-dimensional argument 

z:+ z: + p2 P2 + r2 
2z1z2 T2-r2‘  

-- - U =  

(See 0 6 of Ohno and Okabe (1983) for further details.) 
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Figure 1. Geometry specifying the correlation function between two points r ,  = (xl , z I )  
and rz  = (x2, z2), zI  and z2 are normal distances from the surface and p = /xl -x21 is a 
distance parallel to the surface. The correlation function depends only on the real distance 
r = [ p 2  + ( zI  - 22)2 ]”2  and the image distance i = [ p2+ ( z1 + z ~ ) ~ ] ~ ’ * .  

The mirror theory holds for general semi-infinite (spin) systems in spite of their 
intrinsic nonlinearity. Very recently, Cardy (1984) derived equation (2) by the use of 
the invariance under the special conformal transformation 

r l / r i 2 =  ( r i / r ; ) + a ,  (4) 

where a is an arbitrary vector parallel to the surface. This transformation has often 
been utilised in bulk critical phenomena (Polyakov 1970, Wegner 1976), but in surface 
critical phenomena for the first time by Cardy (1984). Figure 2 shows an example of 
the square lattice ( d  = 2) transformed by (4). Although distortions become significant 
away from the origin, local angles and surface geometry are preserved under such a 
mapping. The correlation functions are invariant under this transformation because 
of the local invariance of the fixed-point Hamiltonian X*. Cardy (1984) treated the 
translational vector a to be infinitesimal, but it should be emphasised that such an 
assumption is not necessary to prove the mirror theory. Indeed, the ratio of the real 
distance to the image one r /  f is invariant under the transformation (4) with an arbitrary 
a parallel to the surface; this is shown by an elementary &dimensional vector algebra. 
Thus the 2-point correlation function must take the form of equation ( 1 )  with an 
unknown function ’@( r /  7). Previously, Lubensky and Rubin (1975) proposed a scaling 
form similar to ours (see equation (4.21) of their paper). However, their conjecture 
for the form of Y ( r / 7 )  is too restricted and cannot be accepted in general. 

As the consequence of the mirror theory, we can directly derive one of the scaling 
relations (Lubensky and Rubin 1975, Binder 1983) 
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Figure 2. Square lattice transformed by the special conformal transformation (4) with 
(I = (-0.05,O). The original axes ( x  and I) are shown in bold full lines, both corresponding 
to the interval (-6.6). Each distorted square corresponds to a unit square in the underlying 
coordinates. Although the distortions become significant away from the origin, local angles 
and surface geometry are preserved. One may use a scale to see that the ratio of the real 
distance to the image one r / F  is invariant under the transformation. 

among surface critical exponents. These critical exponents are defined by 

( 6 )  d-2+1111 
G J Z I  , z*) ; ClI(Z1, Z 2 ) / P  - C l ( Z 2 ) / Z f - 2 + ~ , .  

2,+m 
(7) 

Suppose f( u )  tends to zero as f( u )  + U-* for large U. Then, combining this asymptotic 
behaviour with equations (2), (3) ,  ( 6 )  and (7), one gets 911 = 2 -  d +27j and v1 = 
i ( 2  - d - 9) + < and in turn derives the surface scaling relation ( 5 ) .  Moreover, the 
ratio of amplitudes 

( C,( ZI ) C,( z*))/( Cll (ZI , z2) C )  (8) 

is shown to be universal ( C  is an amplitude for GbUIk( r ) ) .  Similar universal combina- 
tions of critical amplitudes have been discussed by Okabe and Ohno (1984). 

Since the mirror theory does not determine the form of the functionf( U )  completely 
(the only exception is the case of d = 2: see Cardy 1984), one should derive an explicit 
form of f (  u )  or at least an equation satisfied by f( U). For perturbation theories such 
as the E or l / n  expansion, the method adopted by Ohno and Okabe (1983,1984) is 
useful in determining the real space correlation function. 

The rest of this letter is devoted to presenting a new result with the ~ ( = 4 - d )  
expansion for the semi-infinite O ( n )  model. First of all, within a mean-field theory, 
the 2-point correlation function is given by 

G?'(z,, z2) = ( z ~ z ~ ) - ~ + ~ / ~ ( ~ T ) - ~ / ~  g ( O )  (U). (9) 
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Here the function g(O'( U )  is, in the E + 0 limit, 

(10) 
for the ordinary transition 
for the special transition, g'O'( U )  = { 

which satisfies 9g''' = 0 with 

9 = ( u 2 -  1 )  d2/dv2+ (4-  &)U d /dv+(  1 - $ E ) ( ~ - $ E ) .  ( 1 1 )  

To the order of two loops, the correlation function is explicitly given in the form (2) 
with (3) and f (  U )  =f'"'( U )  + f ( b ) (  U), where f a ' (  U )  and f b ' (  U )  satisfy 

respectively. Here, 77 = ( n  + 2 ) ~ ~ / 2 (  n + 8)2+ O( E ~ )  is the bulk anomalous dimension 
and 5 is a parameter of O ( E ) ;  writing 5 = p2  - f ,  

1 n + 2  (n+2)(17n+76) 
E 2  k=2-2(n+&- 4( n + 8)3 

for the ordinary transition and 

P = 
1 n + 2  5(n+2)(n-4)  
2 2(n+8) ' -  

E 2  
4 ( ~ 1 + 8 ) ~  

for the special transition. Solving (12) and (13) leads us to our final result 

where Q: is the associated Legendre function of second kind and y is taken to be 

for the ordinary transition 
for the special transition. Y = { '  U 

This is the first presentation of the correlation function in real space. The related 
exponents are given, respectively, by qI1 = 1 + 2p and q L  = ;( 1 + 2p + q )  with (14) or 
(15), which coincide with the previous analysis by Diehl and Dietrich (1981a, b) and 
Reeve and Guttmann (1981). 

Finally, we want to note that the present theory should be valid also in the cases 
of the extraordinary transition and the anisotropic special transition. Some results 
using the l / n  expansion have been given by Ohno and Okabe (1984) and Ohno et a1 
(1985). 

It is a pleasure to thank Professor K Niizeki for useful discussions. 
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